3.188 \(\int \frac{\sqrt{a+b x^3} (A+B x^3)}{x^6} \, dx\)

Optimal. Leaf size=272 \[ -\frac{3^{3/4} \sqrt{2+\sqrt{3}} b^{2/3} \left (\sqrt [3]{a}+\sqrt [3]{b} x\right ) \sqrt{\frac{a^{2/3}-\sqrt [3]{a} \sqrt [3]{b} x+b^{2/3} x^2}{\left (\left (1+\sqrt{3}\right ) \sqrt [3]{a}+\sqrt [3]{b} x\right )^2}} (A b-10 a B) \text{EllipticF}\left (\sin ^{-1}\left (\frac{\left (1-\sqrt{3}\right ) \sqrt [3]{a}+\sqrt [3]{b} x}{\left (1+\sqrt{3}\right ) \sqrt [3]{a}+\sqrt [3]{b} x}\right ),-7-4 \sqrt{3}\right )}{20 a \sqrt{\frac{\sqrt [3]{a} \left (\sqrt [3]{a}+\sqrt [3]{b} x\right )}{\left (\left (1+\sqrt{3}\right ) \sqrt [3]{a}+\sqrt [3]{b} x\right )^2}} \sqrt{a+b x^3}}+\frac{\sqrt{a+b x^3} (A b-10 a B)}{20 a x^2}-\frac{A \left (a+b x^3\right )^{3/2}}{5 a x^5} \]

[Out]

((A*b - 10*a*B)*Sqrt[a + b*x^3])/(20*a*x^2) - (A*(a + b*x^3)^(3/2))/(5*a*x^5) - (3^(3/4)*Sqrt[2 + Sqrt[3]]*b^(
2/3)*(A*b - 10*a*B)*(a^(1/3) + b^(1/3)*x)*Sqrt[(a^(2/3) - a^(1/3)*b^(1/3)*x + b^(2/3)*x^2)/((1 + Sqrt[3])*a^(1
/3) + b^(1/3)*x)^2]*EllipticF[ArcSin[((1 - Sqrt[3])*a^(1/3) + b^(1/3)*x)/((1 + Sqrt[3])*a^(1/3) + b^(1/3)*x)],
 -7 - 4*Sqrt[3]])/(20*a*Sqrt[(a^(1/3)*(a^(1/3) + b^(1/3)*x))/((1 + Sqrt[3])*a^(1/3) + b^(1/3)*x)^2]*Sqrt[a + b
*x^3])

________________________________________________________________________________________

Rubi [A]  time = 0.102572, antiderivative size = 272, normalized size of antiderivative = 1., number of steps used = 3, number of rules used = 3, integrand size = 22, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.136, Rules used = {453, 277, 218} \[ -\frac{3^{3/4} \sqrt{2+\sqrt{3}} b^{2/3} \left (\sqrt [3]{a}+\sqrt [3]{b} x\right ) \sqrt{\frac{a^{2/3}-\sqrt [3]{a} \sqrt [3]{b} x+b^{2/3} x^2}{\left (\left (1+\sqrt{3}\right ) \sqrt [3]{a}+\sqrt [3]{b} x\right )^2}} (A b-10 a B) F\left (\sin ^{-1}\left (\frac{\sqrt [3]{b} x+\left (1-\sqrt{3}\right ) \sqrt [3]{a}}{\sqrt [3]{b} x+\left (1+\sqrt{3}\right ) \sqrt [3]{a}}\right )|-7-4 \sqrt{3}\right )}{20 a \sqrt{\frac{\sqrt [3]{a} \left (\sqrt [3]{a}+\sqrt [3]{b} x\right )}{\left (\left (1+\sqrt{3}\right ) \sqrt [3]{a}+\sqrt [3]{b} x\right )^2}} \sqrt{a+b x^3}}+\frac{\sqrt{a+b x^3} (A b-10 a B)}{20 a x^2}-\frac{A \left (a+b x^3\right )^{3/2}}{5 a x^5} \]

Antiderivative was successfully verified.

[In]

Int[(Sqrt[a + b*x^3]*(A + B*x^3))/x^6,x]

[Out]

((A*b - 10*a*B)*Sqrt[a + b*x^3])/(20*a*x^2) - (A*(a + b*x^3)^(3/2))/(5*a*x^5) - (3^(3/4)*Sqrt[2 + Sqrt[3]]*b^(
2/3)*(A*b - 10*a*B)*(a^(1/3) + b^(1/3)*x)*Sqrt[(a^(2/3) - a^(1/3)*b^(1/3)*x + b^(2/3)*x^2)/((1 + Sqrt[3])*a^(1
/3) + b^(1/3)*x)^2]*EllipticF[ArcSin[((1 - Sqrt[3])*a^(1/3) + b^(1/3)*x)/((1 + Sqrt[3])*a^(1/3) + b^(1/3)*x)],
 -7 - 4*Sqrt[3]])/(20*a*Sqrt[(a^(1/3)*(a^(1/3) + b^(1/3)*x))/((1 + Sqrt[3])*a^(1/3) + b^(1/3)*x)^2]*Sqrt[a + b
*x^3])

Rule 453

Int[((e_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_.)*((c_) + (d_.)*(x_)^(n_)), x_Symbol] :> Simp[(c*(e*x)^(m
+ 1)*(a + b*x^n)^(p + 1))/(a*e*(m + 1)), x] + Dist[(a*d*(m + 1) - b*c*(m + n*(p + 1) + 1))/(a*e^n*(m + 1)), In
t[(e*x)^(m + n)*(a + b*x^n)^p, x], x] /; FreeQ[{a, b, c, d, e, p}, x] && NeQ[b*c - a*d, 0] && (IntegerQ[n] ||
GtQ[e, 0]) && ((GtQ[n, 0] && LtQ[m, -1]) || (LtQ[n, 0] && GtQ[m + n, -1])) &&  !ILtQ[p, -1]

Rule 277

Int[((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[((c*x)^(m + 1)*(a + b*x^n)^p)/(c*(m +
1)), x] - Dist[(b*n*p)/(c^n*(m + 1)), Int[(c*x)^(m + n)*(a + b*x^n)^(p - 1), x], x] /; FreeQ[{a, b, c}, x] &&
IGtQ[n, 0] && GtQ[p, 0] && LtQ[m, -1] &&  !ILtQ[(m + n*p + n + 1)/n, 0] && IntBinomialQ[a, b, c, n, m, p, x]

Rule 218

Int[1/Sqrt[(a_) + (b_.)*(x_)^3], x_Symbol] :> With[{r = Numer[Rt[b/a, 3]], s = Denom[Rt[b/a, 3]]}, Simp[(2*Sqr
t[2 + Sqrt[3]]*(s + r*x)*Sqrt[(s^2 - r*s*x + r^2*x^2)/((1 + Sqrt[3])*s + r*x)^2]*EllipticF[ArcSin[((1 - Sqrt[3
])*s + r*x)/((1 + Sqrt[3])*s + r*x)], -7 - 4*Sqrt[3]])/(3^(1/4)*r*Sqrt[a + b*x^3]*Sqrt[(s*(s + r*x))/((1 + Sqr
t[3])*s + r*x)^2]), x]] /; FreeQ[{a, b}, x] && PosQ[a]

Rubi steps

\begin{align*} \int \frac{\sqrt{a+b x^3} \left (A+B x^3\right )}{x^6} \, dx &=-\frac{A \left (a+b x^3\right )^{3/2}}{5 a x^5}-\frac{\left (\frac{A b}{2}-5 a B\right ) \int \frac{\sqrt{a+b x^3}}{x^3} \, dx}{5 a}\\ &=\frac{(A b-10 a B) \sqrt{a+b x^3}}{20 a x^2}-\frac{A \left (a+b x^3\right )^{3/2}}{5 a x^5}-\frac{(3 b (A b-10 a B)) \int \frac{1}{\sqrt{a+b x^3}} \, dx}{40 a}\\ &=\frac{(A b-10 a B) \sqrt{a+b x^3}}{20 a x^2}-\frac{A \left (a+b x^3\right )^{3/2}}{5 a x^5}-\frac{3^{3/4} \sqrt{2+\sqrt{3}} b^{2/3} (A b-10 a B) \left (\sqrt [3]{a}+\sqrt [3]{b} x\right ) \sqrt{\frac{a^{2/3}-\sqrt [3]{a} \sqrt [3]{b} x+b^{2/3} x^2}{\left (\left (1+\sqrt{3}\right ) \sqrt [3]{a}+\sqrt [3]{b} x\right )^2}} F\left (\sin ^{-1}\left (\frac{\left (1-\sqrt{3}\right ) \sqrt [3]{a}+\sqrt [3]{b} x}{\left (1+\sqrt{3}\right ) \sqrt [3]{a}+\sqrt [3]{b} x}\right )|-7-4 \sqrt{3}\right )}{20 a \sqrt{\frac{\sqrt [3]{a} \left (\sqrt [3]{a}+\sqrt [3]{b} x\right )}{\left (\left (1+\sqrt{3}\right ) \sqrt [3]{a}+\sqrt [3]{b} x\right )^2}} \sqrt{a+b x^3}}\\ \end{align*}

Mathematica [C]  time = 0.0826477, size = 80, normalized size = 0.29 \[ \frac{\sqrt{a+b x^3} \left (\frac{x^3 \left (\frac{A b}{2}-5 a B\right ) \, _2F_1\left (-\frac{2}{3},-\frac{1}{2};\frac{1}{3};-\frac{b x^3}{a}\right )}{\sqrt{\frac{b x^3}{a}+1}}-2 A \left (a+b x^3\right )\right )}{10 a x^5} \]

Antiderivative was successfully verified.

[In]

Integrate[(Sqrt[a + b*x^3]*(A + B*x^3))/x^6,x]

[Out]

(Sqrt[a + b*x^3]*(-2*A*(a + b*x^3) + (((A*b)/2 - 5*a*B)*x^3*Hypergeometric2F1[-2/3, -1/2, 1/3, -((b*x^3)/a)])/
Sqrt[1 + (b*x^3)/a]))/(10*a*x^5)

________________________________________________________________________________________

Maple [B]  time = 0.021, size = 616, normalized size = 2.3 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((B*x^3+A)*(b*x^3+a)^(1/2)/x^6,x)

[Out]

B*(-1/2*(b*x^3+a)^(1/2)/x^2-1/2*I*3^(1/2)*(-a*b^2)^(1/3)*(I*(x+1/2/b*(-a*b^2)^(1/3)-1/2*I*3^(1/2)/b*(-a*b^2)^(
1/3))*3^(1/2)*b/(-a*b^2)^(1/3))^(1/2)*((x-1/b*(-a*b^2)^(1/3))/(-3/2/b*(-a*b^2)^(1/3)+1/2*I*3^(1/2)/b*(-a*b^2)^
(1/3)))^(1/2)*(-I*(x+1/2/b*(-a*b^2)^(1/3)+1/2*I*3^(1/2)/b*(-a*b^2)^(1/3))*3^(1/2)*b/(-a*b^2)^(1/3))^(1/2)/(b*x
^3+a)^(1/2)*EllipticF(1/3*3^(1/2)*(I*(x+1/2/b*(-a*b^2)^(1/3)-1/2*I*3^(1/2)/b*(-a*b^2)^(1/3))*3^(1/2)*b/(-a*b^2
)^(1/3))^(1/2),(I*3^(1/2)/b*(-a*b^2)^(1/3)/(-3/2/b*(-a*b^2)^(1/3)+1/2*I*3^(1/2)/b*(-a*b^2)^(1/3)))^(1/2)))+A*(
-1/5*(b*x^3+a)^(1/2)/x^5-3/20*b/a*(b*x^3+a)^(1/2)/x^2+1/20*I*b/a*3^(1/2)*(-a*b^2)^(1/3)*(I*(x+1/2/b*(-a*b^2)^(
1/3)-1/2*I*3^(1/2)/b*(-a*b^2)^(1/3))*3^(1/2)*b/(-a*b^2)^(1/3))^(1/2)*((x-1/b*(-a*b^2)^(1/3))/(-3/2/b*(-a*b^2)^
(1/3)+1/2*I*3^(1/2)/b*(-a*b^2)^(1/3)))^(1/2)*(-I*(x+1/2/b*(-a*b^2)^(1/3)+1/2*I*3^(1/2)/b*(-a*b^2)^(1/3))*3^(1/
2)*b/(-a*b^2)^(1/3))^(1/2)/(b*x^3+a)^(1/2)*EllipticF(1/3*3^(1/2)*(I*(x+1/2/b*(-a*b^2)^(1/3)-1/2*I*3^(1/2)/b*(-
a*b^2)^(1/3))*3^(1/2)*b/(-a*b^2)^(1/3))^(1/2),(I*3^(1/2)/b*(-a*b^2)^(1/3)/(-3/2/b*(-a*b^2)^(1/3)+1/2*I*3^(1/2)
/b*(-a*b^2)^(1/3)))^(1/2)))

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (B x^{3} + A\right )} \sqrt{b x^{3} + a}}{x^{6}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((B*x^3+A)*(b*x^3+a)^(1/2)/x^6,x, algorithm="maxima")

[Out]

integrate((B*x^3 + A)*sqrt(b*x^3 + a)/x^6, x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\frac{{\left (B x^{3} + A\right )} \sqrt{b x^{3} + a}}{x^{6}}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((B*x^3+A)*(b*x^3+a)^(1/2)/x^6,x, algorithm="fricas")

[Out]

integral((B*x^3 + A)*sqrt(b*x^3 + a)/x^6, x)

________________________________________________________________________________________

Sympy [A]  time = 2.87325, size = 94, normalized size = 0.35 \begin{align*} \frac{A \sqrt{a} \Gamma \left (- \frac{5}{3}\right ){{}_{2}F_{1}\left (\begin{matrix} - \frac{5}{3}, - \frac{1}{2} \\ - \frac{2}{3} \end{matrix}\middle |{\frac{b x^{3} e^{i \pi }}{a}} \right )}}{3 x^{5} \Gamma \left (- \frac{2}{3}\right )} + \frac{B \sqrt{a} \Gamma \left (- \frac{2}{3}\right ){{}_{2}F_{1}\left (\begin{matrix} - \frac{2}{3}, - \frac{1}{2} \\ \frac{1}{3} \end{matrix}\middle |{\frac{b x^{3} e^{i \pi }}{a}} \right )}}{3 x^{2} \Gamma \left (\frac{1}{3}\right )} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((B*x**3+A)*(b*x**3+a)**(1/2)/x**6,x)

[Out]

A*sqrt(a)*gamma(-5/3)*hyper((-5/3, -1/2), (-2/3,), b*x**3*exp_polar(I*pi)/a)/(3*x**5*gamma(-2/3)) + B*sqrt(a)*
gamma(-2/3)*hyper((-2/3, -1/2), (1/3,), b*x**3*exp_polar(I*pi)/a)/(3*x**2*gamma(1/3))

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (B x^{3} + A\right )} \sqrt{b x^{3} + a}}{x^{6}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((B*x^3+A)*(b*x^3+a)^(1/2)/x^6,x, algorithm="giac")

[Out]

integrate((B*x^3 + A)*sqrt(b*x^3 + a)/x^6, x)